Label Smoothing논문 1. Label Smoothing? 모델이 Ground Truth(GT)를 정확하게 예측하지 않아도 되게 만들어 주는 것. 모델이 정확하지 않은 학습 데이터셋에 치중되는 경향(overconfident)을 막아 calibration 및 regularization 효과를 가질 수 있다. 2. Why? 보통 학습에 사용되는 데이터셋은 사람이 직접 annotation 하기 때문에 실수의 가능성이 존재하며 100% 정확한 GT 데이터로 생각하면 안된다. 즉, GT데이터가 잘 정제되어 있지 않다면 오분류된 데이터(mislabeled data)가 있을 수 있어 모델이 이를 유하게 학습시키도록 하면 더 효과적이기 때문이다. 3. 정말 좋아? Label smoothing은 mislabel..